$B@6?e9ILj!J4XEl3X1!Bg!K(J
Principle of the Method of Caustics and its Application
Koji SHIMIZU
Kanto Gakuin University
Fundamental principle of the method of caustics is described and some applications of this technique on various problems at our laboratory are shown. When this technique is applied to the stress-frozen model in photoelasticity, there appears very different caustic patterns from those of usual one. Next, as an example of application on the dynamic fracture problem, analysis of fracture behavior of ceramic materials under dynamic loading at high temperatures is described. Moreover, special application of this principle on the method of ultrasonic caustics which is used to evaluate the defect size in the circular rods in water is shown.
$B#1!%$O$8$a$K(J
$B#2!%4pK\86M}(J2)~3)
(a) KI=KII>0
(b)KI=KII<0
Fig.3 Theoretical caustic pattern for Mixed-mode for Mode I ($B&K(J>0,
$B&N(J=0) condition ($B&K(J>0, $B&N(J=0) $B#3!%
$B#4!%E,MQNc(J
$B#4!%#3!!D62;GH%3!<%9%F%#%C%/%9K!(J
$B#5!%$*$o$j$K(J
$B;29MJ88%(J
$B!!1~NO2r@OK!$H$7$F!$%3!<%9%F%#%C%/%9K!$O
$B!!2f!9$,MxMQ$7$F$$$k$N$O8w3X$NJ,Ln$K$*$1$k$b$N$G!$8w$,=8$^$C$F7A@.$5$l$k@~!$(Jcaustic
curve$B$G$"$k!%%3!<%9%F%#%C%/%9K!$OFC$K1~NO3HBg78?t$NB,Dj$KM-NO$G(J2)~3)$B!$$-Nv6aK5$N>pJs$rD>@\E*$KMQ$$$kMxE@$,$"$j!$:`NA$b9bJ,;R:`NA!$6bB0:`NA$5$i$K%;%i%_%C%/%9$J$I$K$bE,MQ$G$-$k!%@EE*$-NvLdBj$N$_$J$i$:F0E*$-NvLdBj!$1~NOIe?)$NLdBj$J$I$K$b1~MQ$5$l$F$$$k!%$3$N8=>]$O$^$?1~NO!&$R$:$_B,Dj0J30$NLdBj$K$b1~MQ$5$l$F$*$j!$$?$H$($PDL?.$*$h$SEE;R5!4o$N:`NA$G$"$k%*%W%A%+%k%U%!%$%P$r0z$-H4$-$G@=B$$9$k$H$-$N!$0z$-H4$-It$N7A>u4IM}$r$9$k%Q%i%a!<%?7WB,(J4)$B$K1~MQ$7$?Nc$,$"$k!%$5$i$KD62;GH$K$*$1$k%3!<%9%F%#%C%/A|$rMxMQ$7$F!$7g4Y$NHsGK2u8!::$r9T$&D62;GH%3!<%9%F%#%C%/%9K!$H$$$o$l$k$b$N$,$"$k(J5)$B!%$3$N$h$&$K%3!<%9%F%#%C%/8=>]$O$$$m$$$m$JJ,Ln$GE,MQ$,$J$5$l$F$$$k!%(J
$B!!%3!<%9%F%#%C%/%9K!$K4X$7$F$O!$$3$l$^$G$K9qFb!$9q30$GB?$/$N8&5f$,$J$5$l$F$$$k$,!$$3$3$G$O4pK\E*86M}$r<($7$?8e!$2f!9$N8&5f<<$G9T$C$?$$$/$D$+$NE,MQNc$K$D$$$F=R$Y$k!%(J
$B!!?^(J1$B$K<($9$h$&$K!$%"%/%j%kHD$J$I$N9bJ,;R:`NA$KIi2Y$7!$8w$rF~
$B>e<0$G#z#0$OJ?HD$H%9%/%j!<%s$N5wN%$G$"$k!%<0!J(J1$B!K$N"$#s$O;n83JR$N6~@^N($NJQ2=$*$h$SHD8|$NJQ2=$h$j7W;;$9$k$3$H$,$G$-!$<0!J(J2$B!K$N$h$&$K$J$k!%(J
(2$B!K(J
$B>e<0$G!$#c#0$O:`NA$K$h$C$FDj$^$k%3!<%9%F%#%C%/Dj?t!$&N$O:`NA$N8w3XE*0[J}@-$r<($9Dj?t!$#t$OHD8|!$&R#1!$&R#2$O
(3)
c0$B$O@dBPCM$G$"$k!%&K$O8w3X7O$NG\N(!$&D$ODj?t$G@EE*$N>l9g$O(J3.17$B$G$"$k!%<0!J(J3$B!K$h$j!$%3!<%9%F%#%C%/A|$NBg$-$5#D$rB,Dj$9$l$P1~NO3HBg78?t#K(JI$B$r5a$a$k$3$H$,$G$-$k!%%b!<%I(JII$B!$%b!<%I(JIII$B$5$i$K
$B!!?^(J2$B$K4pK\E*$J%3!<%9%F%#%C%/A|$r<($7$?$,!$%3!<%9%F%#%C%/A|$N7A>u$O!$MQ$$$?8w3X7O!$:`NA$N8w3XDj?t!$1~NO$N@5Ii$J$I$K$h$C$F7A>u$,JQ2=$9$k!%1~NO$N@5!$Ii$K$h$C$FJQ2=$9$kNc$r?^(J3$B$K<($7$?!%$3$l$O?^(J2$B$N>l9g$HF1MM$K!$J?9T8w$b$7$/$OH/;68w$rMQ$$!$8w3XE*0[J}@-$N$J$$:`NA$K(JKI$B!a(JKII$B$N>r7o$GIi2Y$7$?$H$-$KF@$i$l$k%3!<%9%F%#%C%/A|$G!$(J(a)$B$O(JKI$B!$(JKII$B$H$b$K@5$N>l9g!$(J(b)$B$O(JKI$B!$(JKII$B$H$b$KIi$N>l9g$N$b$N$G$"$k!%<+A3$-Nv$N>l9g$K$O!$(JKI<0$B$N$H$-$OA|$O=P$J$$$,!$%N%C%A$N>l9g$K$O?^(J3(b)$B$N$h$&$JA|$,8=$l$k$N$G!$Cm0U$,I,MW$G$"$j!$$^$?$3$l$rMxMQ$7$F1~NO$"$k$$$O1~NO3HBg78?t$N@5!$Ii$rH=CG$9$k$3$H$,$G$-$k!%(J
Fig.1 Principle of caustics method
Fig.2 Theoretical caustic pattern
$B!!%3!<%9%F%#%C%/%9K!$K4X$9$k4pK\E*
Fig.4 Schematic view of experimental apparatus of caustics method
$B#4!%#1!!1~NOE`7kK!$X$N1~MQ(J6)
$B!!1~NOE`7k$5$l$?8wCF@-%b%G%k$N%9%i%$%9JR$r?;DR1U$KF~$l!$0lHLE*$J%3!<%9%F%#%C%/%9K!$rE,MQ$9$k$H!$%3!<%9%F%#%C%/A|$,F@$i$l$J$$!%$3$N$h$&$KA|$,F@$i$l$J$$860x$O!$<0(J(2)$B$K$*$$$F<($7$?%3!<%9%F%#%C%/Dj?t#c#0$*$h$S8w3XE*0[J}@-$r<($9&N$NCM$,DL>o$N$b$N$HBg$-$/0[$J$C$F$$$k$?$a$G$"$k!%$D$^$j!$1~NOE`7k$7$J$$>o29$N>uBV$G$OIaDL(Jc0<0$B!$&N(J<1$B$G$"$k$,!$1~NOE`7k$7$?>uBV$K$*$1$k$3$l$i$NCM$rB,Dj$7$?7k2L$K$h$l$P!$(Jc0>0$B!$&N(J>1$B$H$J$C$F$$$k!%(Jc0$B$NId9f$O%3!<%9%F%#%C%/%9K!$G$O=EMW$J0UL#$r;}$C$F$*$j!$(Jc0>0$B$H$$$&$3$H$O!$8w$NJP$j$NJ}8~$,DL>o$H$O5U$K$J$C$F$$$k$3$H$r<($9!%$^$?&N(J>1$B$G$"$k$+$i!$%3!<%9%F%#%C%/A|$N7A@.MWNN$,$3$l$^$G$HBg$-$/0[$J$k$3$H$r0UL#$9$k!%(Jc0$B$NId9f$,@5$K$J$k$H$$$&$3$H$O!$8w$NJP$j$O=>Mh$N$b$N$H$O5U$K$-NvCf?4$K=8$^$kJ}8~$G$"$k!%$3$N$h$&$J>l9g$K$O<}B+8w$rMQ$$$?J}$,L@NF$J%3!<%9%F%#%C%/A|$,F@$i$l$k!%1~NOE`7k$7$?%]%j%+!<%\%M!<%HHD$r?;DR1U$KF~$l!$<}B+8w$rMQ$$$F
$B!!%;%i%_%C%/%9$N9b29F0E*Ii2Y>r7o2<$NGK2u5sF0$r2r@O$9$k$3$H$O=EMW$G$"$k$,!$
Fig.5 Caustic patternof stress-frozenmodel (PC, $B&K(J<0)
Fig.6 Caustic patterns under dynamic loading at high temperature (PSZ,
800$B!n(J, 106FPS)
Fig.7 Variations of dynamic KI and crack length a with time
(PSZ, 800$B!n(J)
$B!!D62;GH$N>l9g$K$b8w$HF1MM$KD62;GH$,=8$^$C$F6/$$ItJ,$,7A@.$5$l$k$3$H$,$"$k!%0lNc$H$7$F!$?^(J8$B$N$h$&$K?eCf$K$*$+$l$?4]K@$KD62;GH$rF~
$B!!?^(J9$B$KD62;GH%3!<%9%F%#%C%/%9K!$rMQ$$$F4]K@I=LL$KB8:_$9$k7g4Y$ND9$5$rI>2A$9$kM}O@$r<($9!%?^(J9$B$O7g4Y$rM-$9$k4]K@$r?eCf$K$*$-!$D62;GH$rF~
$B!!%"%k%_%K%&%`$N4]K@$KI}$,Ls(J0.4mm$B$G
Fig.8 Formation of ultrasonic caustic pattern (Aluminum, parallel ray,longitudinal
wave)
Fig.9 Basic concept of ultrasonic caustics
$B!!%3!<%9%F%#%C%/%9K!$K4X$9$k4pK\86M}$H!$2f!9$N8&5f<<$G9T$C$F$-$?8&5fNc$H$7$F!$1~NOE`7kK!$X$N1~MQ!$%;%i%_%C%/%9$N9b29F0E*GK2u$N2r@O$X$N1~MQ!$$5$i$KD62;GH%3!<%9%F%#%C%/%9K!$K4X$9$k8&5f$K$D$$$F=R$Y$?!%%3!<%9%F%#%C%/%9K!$K4X$7$F$O!$$3$l$^$G$K9qFb!$9q30$K$*$$$FB?$/$N8&5f$,$J$5$l$F$*$j!$$3$3$G=R$Y$?2f!9$N8&5fNc$O6K$/6O$+$J$b$N$G$"$k$,!$K\J}K!$N3hMQ$,9-$,$j!$8w3XE*7WB,K!$N0lItLg$H$7$FI8=`2=$,8!F$$5$l$k$H$-$K>/$7$G$bLr$KN)$D$3$H$r4j$C$F$$$k!%(J
$B#1!K(JYu A. Kravtsov and Yu I. Orlov: Caustics, Catastrophes and Wave
Fields, Springer-Verlag, (1993), 1.
$B#2!K9b66>^4F=$!'%U%)%H%a%+%K%/%9!$;33$F2!$(J(1997), 129-156.
$B#3!K(JA.S. Kobayashi: Handbook on Exp. Mech., New Jersey, Prentice-Hall,
Inc., (1987), 407-476.
$B#4!K(JT.D. Dudderar: Strain, 31-2(1995), 43-55.
$B#5!K(JJ.R. Brewster and K.H.G. Ashbee: Ultrasonics, 32-6(1994), 421-424.
$B#6!K@6?e!$9b66!'F|K\5!3#3X2qO@J8=8!J(JA$B!K!$(J55-519(1989), 2348-2355.
$B#7!K(JM. Suetsugu, K. Shimizu and S. Takahashi: Exp. Mech., 38-1(1998),
1-7.
$B#8!KF#K\!$@6?e!'F|K\5!3#3X2q:`NANO3XItLg9V1i2q!$(J(2001$BG/(J8$B7n!$KL8+(J),$BH/I=M=Dj(J
Last Updated July 15, 2001