光学的全視野応力・ひずみ計測 法の標準化におけるVAMAS TWA26の動きについて

米山 聡・森本吉春

和歌山大学システム工学部光メカトロニクス学科 yoneyama@sys.wakayama-u.ac.jp

国際標準化の動き

- n R.L. Burguete, On the standardization of optical stress and strain measurement methods, SEM Annual Conf., Cincinnati (1999)
- n VAMAS TWA26発足(2000)
- n 第1回VAMAS TWA26会議 Orlando (2000)
- n 第2回VAMAS TWA26会議, Portland (2001)
- n 第3回VAMAS TWA26会議, Vienna (2002)

VAMASとは?

VAMAS — The Versailles Project on Advanced Materials and Standards

新材料と標準に関するベルサイユプロジェクト

参加国間で,プレスタンダード化に関する活動を通じて,新材料に関連した新技術の発展を促し,経済的な 交流を活性化する

- † 材料試験法,測定法の 開発
- † 試験結果の比較
- †標準材料・試験片の提供 供
- † 材料特性データベースの 構築
- † 専門用語・記号等の統一

VAMASの活動・組織

VAMAS**の活動**

- †標準化のための前段階の研究
- † 国際ラウンドロビン 試験

ISOによる国際規格化

VAMAS**の組織**

運営委員会(主要7カ国)

技術作業部会

(TWA: Technical Working Are

TWA1 **摩擦試験**

TWA2 表面化学分析

TWA3 セラミックス

TWA26 光学的全視野応力・

ひずみ計測法

:

日本における規格の現状

JIS Z 2300-91 非破壊試験用語 JIS B 7602-93 電気式ロードセル - 性能試験方法 -NDIS 4001-87 ひずみ測定器の性能を表わす用語 NDIS 4002-76 電気抵抗ひずみゲージの用語 NDIS 4003-89 ひずみゲージ式ロードセルと圧力変換器の用語 NDIS 4102-93 電気抵抗ひずみ測定器入力コネクタ NDIS 4103-94 電気抵抗ひずみ測定器丸形出力コネクタ NDIS 4104-96 動ひずみ測定器の性能試験方法及び性能表示 NDIS 4108-97 電気抵抗ひずみゲージの性能特性表示 NDIS 4301-74 標準静ひずみ発生器 NDIS 4402-97 電気抵抗ひずみゲージによるひずみ測定方法通則 NDIS 2417-95 音弾性法による応力の測定方法通則 JSMS-SD-1-00 X線応力測定法標準 - セラミックス編 -JSMS-SD-4-01 圧子圧入法によるセラミックスの残留応力測定法

JIS: 日本工業規格

NDIS: 日本非破壊検査協会規格

JSMS: 日本材料学会標準

海外における規格の現状

ASTM C770-98 ASTM C978-87	Standard test method for measurement of glass stress-optic coefficient Standard test method for photoelastic determination of residual stress in a transparent glass matrix using a polarizing microscope and optical retardation compensation procedure
ASTM C 1279-94	Standard test method for non-destructive photoelastic measurement of edge and surface stresses in annealed, heat-strengthened, and fully tempered glass
ASTM C1246-99	Standard practices for verification and calibratoin of polarimeters
ASTM D4093-95	Standard test method for photoelastic measurement of birefringence and residual strains in transparent or translucent plastic materials
ASTM F218-95	Standard test method for analyzing stress in glass
ASTM E6-89	Standard terminology relating to methods of mechanical testing
ASTM E251-92	Standard test methods for performance characteristics of metallic bonded resistance strain gages
ASTM E837-95	Standard test method for determining residual stresses by the hole-drilling strain-gage Method
ASTM E1237-93	Standard guide for installing bonded resistance strain gages
ASTM E1319-98	Standard guide for high-temperature static strain measurement
ASTM E1561-93	Standard practice for analysis of strain gage rosette data
BS DD6-72	Method for calibration of bonded electric strain gages
BSSM CP1-92	Proctice for the calibration of electrical resisitance strain gages
VDI VDE2635-74	Bonded resistance strain gauges with metallic measurement grids characteristics and testing conditions

標準化の必要性とメリット

- n 信頼性の高い精確な結果を得ることができる
- n 企業においては信頼性の高い製品をより早く安 く設計・製造できる
- n 光学的測定法が普及する
- n 測定・検査結果の信頼性が向上する
- n 新しい手法の従来法との比較が容易になる
- n 異なる方法による測定結果の比較が容易になる

標準化の対象となる測定法

レーザーを用いた方法

コースティックス法 スペックル干渉法

ホログラフィ干渉法

モアレ干渉法

格子を用いた方法

幾何学的モアレ法

実体格子型モアレ法

(シャドーモアレ法)

投影格子型モアレ法

(プロジェクションモアレ法)

CGS 法

光弹性法

透過光弾性法 光弾性皮膜法

赤外線応力測定法

標準化の内容

- n 光源(スペクトル分布,安定性,単色/多色)
- n 光学系(レンズ,ミラー,偏光子)
- n カメラ・センサー(素子の形状,応答特性)
- n デジタイザー(分解能,速度,ノイズ,圧縮)
- n データフォーマット(画像データ,数値データ)
- n 実験手順(試験片作成方法,コーティング法)

Matrix of Optical Techniques

V	TECHNIQUES	Laser techniques							Grid Techniques				Photoelasticity		Other
VAMAS	SUB-TECHNIQUES	Caustics	Speckle Inf.	Shearograph	yHolography	ESPI	Moire inferd	In-plane N	MoiShadow Moir	Projection	MCoh. Grad. Se	enReflection	Transmissi	onelasticity	
TELDS	SUB-FIELDS	A1	B1	C1	D1	E1	F1	G1	H1	11	J1	K1	L1	M1	N1
ŭ	Spectral distribution	A2	B2	C2	D2	E2	F2	G2	H2	12	J2	K2	L2	M2	N2
	Temporal stability	А3	В3	C3	D3	E3	F3	G3	Н3	13	J3	К3	L3	M3	N3
	Poly/mono-chromatic	A4	B4	C4	D4	E4	F4	G4	H4	14	J4	K4	L4	M4	N4
	Lasers	A5	B5	C5	D5	E5	F5	G5	H5	15	J5	K5	L5	M5	N5
	Detector type	A6	В6	C6	D6	E6	F6	G6	H6	16	J6	K6	L6	M6	N6
	Chip size	A7	В7	C7	D7	E7	F7	G7	H7	17	J7	K7	L7	M7	N7
	Pixel shape	A7	В8	C8	D8	E8	F8	G8	H8	18	J8	K8	L8	M8	N8
	Pixel response char.	A8	В9	C9	D9	E9	F9	G9	Н9	19	J9	K9	L9	M9	N9
	Digital/Analogue	A9	B10	C10	D10	E10	F10	G10	H10	I10	J10	K10	L10	M10	N10
Optical components		A10	B11	C11	D11	E11	F11	G11	H11	l11	J11	K11	L11	M11	N11
3	Resolution	A11	B12	C12	D12	E12	F12	G12	H12	l12	J12	K12	L12	M12	N12
	Speed	A12	B13	C13	D13	E13	F13	G13	H13	I13	J13	K13	L13	M13	N13
	Noise	A13	B14	C14	D14	E14	F14	G14	H14	114	J14	K14	L14	M14	N14
	Data Compression	A14	B15	C15	D15	E15	F15	G15	H15	115	J15	K15	L15	M15	N15
Physical ref. mate	P.olarisers & 1/4 wavepla	es A15	B16	C16	D16	E16	F16	G16	H16	l16	J16	K16	L16	M16	N16
	Gratings	A16	B17	C17	D17	E17	F17	G17	H17	117	J17	K17	L17	M17	N17
	Coatings	A17	B18	C18	D18	E18	F18	G18	H18	118	J18	K18	L18	M18	_ N18
Calibration materials		A18	B19	C19	D19	E19	F19	G19	H19	l19	J19	K19	L19	M19	N19
Virtual ref. mate	Simulated data	A19	B20	C20	D20	E20	F20	G20	H20	120	J20	K20	L20	M20	N20
	Synthesised fringe pattern	s A20	B21	C21	D21	E21	F21	G21	H21	121	J21	K21	L21	M21	N21
	Synthesis of noise	A22	B22	C22	D22	E22	F22	G22	H22	122	J22	K22	L22	M22	N22
Output standards	Image data format	A23	B23	C23	D23	E23	F23	G23	H23	123	J23	K23	L23	M23	N23
	Numerical data format	A24	B24	C24	D24	E24	F24	G24	H24	124	J24	K24	L24	M24	N24
	Processed data format	A25	B25	C25	D25	E25	F25	G25	H25	125	J25	K25	L25	M25	N25
perational	Specimen preparation	A26	B26	C26	D26	E26	F26	G26	H26	126	J26	K26	L26	M26	N26
•	Application of surface med	lia A27	B27	C27	D27	E27	F27	G27	H27	127	J27	K27	L27	M27	N27
	Loading: range, rate etc	A28	B28	C28	D28	E28	F28	G28	H28	128	J28	K28	L28	M28	N28
	Ambient conditions	A29	B29	C29	D29	E29	F29	G29	H29	129	J29	K29	L29	M29	N29
	Specimen alignment	A30	B30	C30	D30	E30	F30	G30	H30	130	J30	K30	L30	M30	N30
Correlation methods		A31	B31	C31	D31	E31	F31	G31	H31	l31	J31	K31	L31	M31	N31

ASTMの活動

非接触光学的ひずみ測定法手引き書の草案を作成(ASTM E08-24 Committee

Standard guide for evaluating non-cont optical strain measurement systems

専門用語の定義 一般的な光学的ひずみ測定法の概略 精度・誤差の評価方法

ASTM草案の例

Terminology	Definition
Optical data	Recorded images of specimen, containing encoded
	information related to the displacement and/or displacement gradient field.
Decoded data	Measurement information related to the displacement or displacement gradient field.
Optical data bandwidth	Spatial frequency range of the optical pattern (e.g. fringes, speckle pattern, etc.) that can be recorded in the images without aliasing or loss of information.
Optical resolution (pixels/length)	Number of optical sensor elements (pixels) used to record an image of a region of length L on object.
Spatial resolution for optical data	One-half of the period of the highest frequency component contained in the frequency band of the encoded data.
Decoded data bandwidth	Spatial frequency range of the information after decoding of the optical data
Dynamic range	The range of physical parameter values for which measurements can be acquired with the measurement system.
Spatial resolution for encoded data	One-half of the period of the highest frequency component contained in the frequency band of the decoded data.
Coherent illumination	Light source where the difference in phase is solely a function of optical path differences; interference is a direct consequence.
Incoherent illumination	Light source with random variations in optical path differences; constructive or destructive interference of waves is not possible.
Maximum temporal frequency of encoded data	Reciprocal of the shortest event time contained in the encoded data (e.g., time variations in displacement field)

我々の活動

- g 米山 聡・森本吉春,光学的全視野応力・ひずみ計 測法の国際標準化について,第32回応力・ひずみ測 定と強度評価シンポジウム (2001-1).
- q 米山 聡・森本吉春,光学的全視野応力・ひずみ計 測法標準化の動向,日本機械学会材料力学部門2001 年春のシンポジウム (2001-3).
- q アンケート調査
- g 全視野計測法標準化分科会
- α オーガナイズドセッション
- g 「実験力学」特集号

アンケート結果

光学的測定法を使っていますか?

光学的測定法は有効ですか?

アンケート結果

光学的測定法の使用理由

光学的測定法の使用目的

アンケート結果

使用している測定法

将来使用したい測定法

Which subjects should be standardized?

Terminologies & symbols

Don't know

Experimental procedure

Light sources (wavelength, Instruments & equipments stability, etc) (cameras, detectors, etc)

Optical elements (lenses, etc)

Data format

Materials & specimens

Data processing

